
1 Glaz API

Introduction

The Glaz API provides a programming interface for integrating Glaz-based measurements into your own
programming environment. This includes integration into MATLAB, Python and other applications written in
C, C++, C#, Java and more.

Selecting the correct API

The Glaz API provides a C-style interface for:

• Windows 32-bit applications

• Windows 64-bit applications

• Linux 64-bit applications (gcc)

Use the 32-bit API for compiling and integrating into 32-bit
applications. Use the 64-bit API for compiling and integrating into
64-bit applications.

Supported platforms

Platform Versions/Distrobutions Tested on

Windows Windows 7
Windows 8
Windows 10

Windows 10

Linux Ubuntu Ubuntu 17.04

- C-style interface

- 32-bit and 64-bit libraries

 API 9.24
Application Programming Interface

G
la

z

2 Glaz API

Installing the API

API archive

Download the API zip archive from: http://www.synertronic.co.za/products/glazapi.aspx. The archive contains
the following directory structure:

 GlazLib API base directory with C interface API

 docs API documentation

 example example source code

 include C-style header file

 linux64 64-bit C-style library files for Linux

 rules.d UDEV rule files

 redist Visual Studio redistributables

 VS2012 Visual Studio 2012 redistributables

 VS2017 Visual Studio 2017 redistributables

 win32 32-bit C-style LIB and DLLs for Windows (VS2012, dynamically linked Qt)

 win32-static 32-bit C-style LIB and DLLs for Windows (VS2017, statically linked Qt)

 win64 64-bit C-style LIB and DLLs for Windows (VS2012, dynamically linked Qt)

 win64-static 64-bit C-style LIB and DLLs for Windows (VS2017, statically linked Qt)

Windows

Follow these steps to install the API:

1. Download the zip archive with the API from: http://www.synertronic.co.za/products/glazapi.aspx

2. Extract the zip archive.

3. Copy the include and winXX (win32, win64 or win64-static) directory of the API into the

target directory, from where you will integrate the API into your environment.

4. Install the relevant Visual Studio redistributable:
win32 Install redist/VS2012/vcredist_x86.exe

win32-static Install redist/VS2017/VC_redist.x86.exe

win64 Install redist/VS2012/vcredist_x64.exe

win64-static Install redist/VS2017/VC_redist.x64.exe

Linux

Follow these steps to install the API:

1. Download the zip archive with the API from: http://www.synertronic.co.za/products/glazapi.aspx

2. Extract the zip archive.

3. Copy the include and linux64 directory of the API into the target directory, from where you will

integrate the API into your environment.

4. If the API is used by an application compiled with gcc:

a. Add the directory where the linux *.so.0.0.X is located to LD_LIBRARY_PATH.

b. In the *.so directory add a symbolic link. For example:
 ln -s GlazLib.so GlazLib.so.0.0.7

5. The Glaz LineScan devices use an FTDI USB interface IC. Some Linux distributions have support for
these USB interfaces by default (e.g. Ubuntu) and will automatically load the VCP (virtual com port)
driver when the device is connected. Unload these drivers using one of the following methods:

• Open a terminal and after connecting the devices call:
 sudo rmmod ftdi_sio

 sudo rmmod usbserial

http://www.synertronic.co.za/products/glazapi.aspx
http://www.synertronic.co.za/products/glazapi.aspx
http://www.synertronic.co.za/products/glazapi.aspx

3 Glaz API

• Copy the synertronic.rules file from linux64 rules.d to /etc/udev/rules.d. The

synertronic.rules file contains a rule to automatically unload the VCP driver.

6. Provide access rights to the Glaz LineScan USB devices. Copy the synertronic.rules file from

linux64/rules.d to /etc/udev/rules.d. The synertronic.rules file also contains a

rule to provide access rights.

4 Glaz API

API with C interface

Overview

The API is defined in the single header file GlazLib.h and consists of several C-style functions. The API is

used as follows:

1. Initialise the API

2. Apply settings with the setter functions.

3. Capture the background (optional, only used when background subtraction is required)

4. Run a measurement.

5. Retrieve and process results.

6. Repeat from either:

• Step 1 and initialise with new script file.

• Step 2 with new settings.

• Step 4 with the same settings.

7. Close the API when finisihed.

Initialise the API

The API must be initialised to start a session. Applying settings and running measurement are only possible
after initialisation. There are two methods to initialise the API:

• Initialise the API with a Glaz script by calling initialiseSession. This method is used for multi-camera
measurements or measurements involving Glaz-PD devices.

• Initialise the API without a script by calling initialiseSingleDeviceSession. With this method you can
only connect to a single device of a specified type.

The C-style interface does not support multiple sessions. Calling
initialiseSession or initialiseSingleDeviceSession will close the
previous session and disconnect from all Glaz devices.

Apply settings

The API provides several setter functions to set the trigger mode, trigger delay, integration time and more.
Apply the relevant settings before running the next measurement.

Run a measurement

Run a measurement by calling runMeasurement. During a measurement, the Glaz camera will capture the
specified scanCount number of lines with the specified level of hardware averaging. The capture lines will

be averaged a processed by the Glaz library as specified in the script file. In single-device mode the capture
lines are simply averaged. See the Glaz LineScan manuals for more information.

The runMeasurement function only returns execution when the
measurement is completed. For very long measurement runs the
application might seem to hang until the measurement is completed.

5 Glaz API

Retrieve and process results

The API provides several getter functions to retrieve results. The getResult function is most often used and
returns the averaged result of a calculation with the given index. In single-device mode there is only one
calculation result with index “0”. This result is simply the average of the captured lines.

Individual scanned lines are retrieved with the getScan function. All scanned lines are retrieved with the
getAllScans function. This functionality is only available when keepscans is enabled.

Complex results are retrieved with the getComplex* functions. These functions are only relevant when the
IFFT pre-processor is used.

See the Glaz LineScan manuals for more information.

Close the API

It is important to call the close function at the end of the application. This will close the session and disconnect
from all Glaz devices.

Error handling

All functions, except getVersion, return an error code. The client of the API must check the returned error
code and implement the relevant actions if an error was encountered.

6 Glaz API

GlazLib.h header file

#define ERROR_NONE 0
#define ERROR_NOT_INITIALISED 1
#define ERROR_SCRIPT 2
#define ERROR_CONNECTING_TO_CAMERAS 3
#define ERROR_DOWNLOADING_CALIBRATIONS 4
#define ERROR_INVALID_WAVELENGTHS 5
#define ERROR_INVALID_AVERAGING 6
#define ERROR_INVALID_SCAN_COUNT 7
#define ERROR_INVALID_TRIGGER_MODE 8
#define ERROR_INVALID_TRIGGER_DELAY 9
#define ERROR_INVALID_INTEGRATION_TIME 10
#define ERROR_INVALID_SCAN_CLOCK_SPEED 11
#define ERROR_INVALID_SETTINGS 12
#define ERROR_CAPTURING_BACKGROUNDS 13
#define ERROR_RUNNING_MEASUREMENT 14
#define ERROR_INVALID_CALCULATION_INDEX 15
#define ERROR_INVALID_RESULT_DATA_SIZE 16
#define ERROR_INVALID_PD_NUMBER 17
#define ERROR_INVALID_PD_CHANNEL 18
#define ERROR_INVALID_CAMERA_NUMBER 19
#define ERROR_INVALID_TRIGGER_FREQUENCY 20
#define ERROR_NO_MEASUREMENT_RUN 21
#define ERROR_INITIALISING_SINGEL_DEVICE 22
#define ERROR_INVALID_SINGLE_DEVICE_TYPE 23
#define ERROR_INVALID_SYNC_OUT_MODE 24
#define ERROR_INVALID_INTEGRATION_MODE 25
#define ERROR_CLOCK_SPEED_UNSUPPORTED 26
#define ERROR_INVALID_AUX_OUT_MODE 27
#define ERROR_CYCLE_COUNT_UNSUPPORTED 28
#define ERROR_INVALID_CYCLE_COUNT 29
#define ERROR_INVALID_TEST_MODE 30
#define ERROR_OUT_POLARITY_NOT_SUPPORTED 31
#define ERROR_INVALID_OUT_POLARITY 32
#define ERROR_RESOLUTION_OUT_OF_RANGE 33
#define ERROR_RESOLUTION_NOT_SUPPORTED 34
#define ERROR_RUNNING_USB_COMMS_TEST 35
#define ERROR_MEASUREMENT_STREAM 36
#define ERROR_AUX_STATES_NOT_SUPPORTED 37
#define ERROR_INTEGRATION_TIME_NOT_SUPPORTED 38
#define ERROR_INVALID_ADC_GAIN 39
#define ERROR_AUX_CYCLE_COUNT_INVALID 40
#define ERROR_INVALID_FILE_FORMAT 41

#define GLAZ_LINESCAN_I_PULSESYNC_S10453_SINGLE_DEVICE_TYPE 1
#define GLAZ_LINESCAN_I_PULSESYNC_S11639_SINGLE_DEVICE_TYPE 2
#define GLAZ_LINESCAN_I_TIMEFILL_S11639_SINGLE_DEVICE_TYPE 3
#define GLAZ_LINESCAN_I_SPECTROCAM_S11639_SINGLE_DEVICE_TYPE 4
#define GLAZ_LINESCAN_II_SINGLE_DEVICE_TYPE 5
#define GLAZ_LINESCAN_II_V2_SINGLE_DEVICE_TYPE 6
#define GLAZ_LINESCAN_LS_SINGLE_DEVICE_TYPE 7
#define GLAZ_LINESCAN_EC_SINGLE_DEVICE_TYPE 8

#define AVERAGING_X1 0
#define AVERAGING_X2 1
#define AVERAGING_X4 2
#define AVERAGING_X8 3
#define AVERAGING_X16 4
#define AVERAGING_X32 5
#define AVERAGING_X64 6
#define AVERAGING_X128 7
#define AVERAGING_X256 8
#define AVERAGING_X512 9
#define AVERAGING_X1024 10
#define AVERAGING_X2048 11
#define AVERAGING_X4096 12

7 Glaz API

#define RESOLUTION_16BIT 3
#define RESOLUTION_14BIT 2
#define RESOLUTION_12BIT 1
#define RESOLUTION_10BIT 0

#define TRIGGER_EXTERNAL 0
#define TRIGGER_INTERNAL 1
#define TRIGGER_BURST 2

#define INT_MODE_PULSESYNC 0
#define INT_MODE_TIMEFILL 1

#define OUT_INT_WINDOW 0
#define OUT_TRIGGER 1
#define OUT_BUSY 2
#define OUT_TRIGGER_CYCLE_START 3
#define OUT_TRIGGER_CYCLE_RUNNING 4
#define OUT_OFF 5

#define OUT_POLARITY_ACTIVE_HI 1
#define OUT_POLARITY_ACTIVE_LO 0

#define SCAN_CLOCK_FULL_SPEED 0
#define SCAN_CLOCK_HALF_SPEED 1

#define TEST_OFF 0
#define TEST_DAC_ALTERNATING 1
#define TEST_DAC_ALL_ONES 2
#define TEST_DAC_ALL_ZEROS 3

#define ADC_GAIN_X1 0
#define ADC_GAIN_X2 1
#define ADC_GAIN_X4 2

#define FORMAT_BINARY 0
#define FORMAT_CSV 1

void getVersion(int* majorVersion, int* minorVersion);

int enableDataStreamLog(bool enabled);

int initialiseSession(const char* scriptFileName);
int initialiseSingleDeviceSession(int singelDeviceType, bool keepScans, bool reverse);
int closeSession();

void resetAllDevices();
void resetAllPorts();

int setTestMode(int testMode);

int setWavelengths(double lambdaMin, double lambdaMax);
int setHardwareAveraging(int averaging);
int setResolution(int resolution);
int setScanCount(int scanCount);
int setScanClockSpeed(int speed);

int setADCGain(int gain);

int setTriggerDelay(int us);
int setTriggerMode(int mode);
int setInternalTriggerFrequency(double Hz);

int setIntegrationMode(int mode);
int setIntegrationTime(int us);

8 Glaz API

int setSyncOutMode(int mode);
int setSyncOutPolarity(int polarity);
int setAuxOutMode(int mode);
int setAuxOutPolarity(int polarity);
int setOutCycleCount(int cycleCount);

int setTimeout(int ms);

int captureBackground();
int runMeasurement();
int startMeasurement();
int isMeasurementDone(bool* isDone);
int getResult(int calculationIndex, int* count, double* values);
int getComplexResult(int calculationIndex, int* count, double* real, double* imag);

int getTimeStamp(int cameraNumber, int scanIndex, double* timestamp);
int getScan(int calculationIndex, int scanIndex, int* count, double* values);
int getComplexScan(int calculationIndex, int scanIndex, int* count, double* real, double* imag);

int getAllScansSizes(int calculationIndex, int* rowCount, int* coloumnCount);
int getAllScans(int calculationIndex, unsigned short* values);
int writeAllScansToFile(int calculationIndex, const char* filename, bool writeTimestamps,
 int fileFormat);

int getPDValues(int pdNumber, int pdChannel, int* count, double* values);
int getPDReference(int pdNumber, int pdChannel, double* value);

int getAUXSTates(int cameraNumber, int* count, bool* values);

int getLastErrorMessage(char* errorMessage);

void getVersion(int* majorVersion, int* minorVersion)

Returns the version of the API.

Parameters:

majorVersion Major API version number.

minorVersion Minor API version number.

int initialiseSession(const char* scriptFileName)

Initialise the API with the given scriptFileName. If the API was initialised before, the previous session is closed
and the API disconnects from all previously connected Glaz devices. Glaz script files are described in more
detail in the Glaz LineScan manuals.

Parameters:

scriptFileName File path of the Glaz script file.

Return error codes:

ERROR_NONE No error and initialisation was successful.

ERROR_SCRIPT The specified script was not found or contains an error.

ERROR_CONNECTING_TO_CAMERAS There was an error while connecting to the devices specified in the script
file. This can be caused by an USB communication error or the specified
device was not found or is busy. Use the getLastErrorMessage to obtain
more information about the error.

ERROR_INVALID_SETTINGS The script contains an invalid combination of settings and devices. Use
the getLastErrorMessage to obtain more information about the error.

ERROR_DOWNLOADING_CALIBRATIONS There was an error while downloading the camera calibration from one of
the target devices. Use the getLastErrorMessage to obtain more
information about the error.

9 Glaz API

int initialiseSingleDeviceSession (int singelDeviceType, bool keepScans, bool reverse)

Initialise the API in single-device mode. If the API was initialised before, the previous session is closed and
the API disconnects from all previously connected Glaz devices.

During single-device initialisation the Glaz back-end is initialised with the following script:

 <!DOCTYPE GlazScript>"

 <config>"

 <camera serial=<SN> number="1" master="1" reverse=<R>/>

 <calculation name="Camera 1" keepscans=<KS>>

 <measurement camera="1"/>

 </calculation>

 </config>

The serial number <SN>, reverse <R> and keep-scans <KS> attribute are determined from the

singelDeviceType, reverse and keepScans parameters.

Parameters:

singelDeviceType Specifies the type of Glaz LineScan camera. Must be one of the
following values (as defined at the top of the header file):
 GLAZ_LINESCAN_I_PULSESYNC_S10453_SINGLE_DEVICE_TYPE 1
 GLAZ_LINESCAN_I_PULSESYNC_S11639_SINGLE_DEVICE_TYPE 2
 GLAZ_LINESCAN_I_TIMEFILL_S11639_SINGLE_DEVICE_TYPE 3
 GLAZ_LINESCAN_I_SPECTROCAM_S11639_SINGLE_DEVICE_TYPE 4
 GLAZ_LINESCAN_II_SINGLE_DEVICE_TYPE 5
 GLAZ_LINESCAN_II_V2_SINGLE_DEVICE_TYPE 6
 GLAZ_LINESCAN_LS_SINGLE_DEVICE_TYPE 7
 GLAZ_LINESCAN_EC_SINGLE_DEVICE_TYPE 8

Note: LineScan-I PulseSync S10453 was previously called the Glaz-I.
LineScan-I TimeFill S11639 was previously called the Glaz-S.

keepScans When set to true all individual scans (lines) will be stored in memory
and can be accessed via the getScan functions after runMeasurement
was called.

reverse When set to true, the line pixel data is reversed.

Return error codes:

ERROR_NONE No error and initialisation was successful.

ERROR_INVALID_SINGLE_DEVICE_TYPE An invalid value was passed for singelDeviceType.

ERROR_INITIALISING_SINGEL_DEVICE Unknown error while initialising the internal session.

ERROR_CONNECTING_TO_CAMERAS There was an error while connecting to the devices specified in the
script file. This can be caused by an USB communication error or the
specified device was not found or is busy. Use the
getLastErrorMessage to obtain more information about the error.

ERROR_INVALID_SETTINGS Unknown error while initialising the internal session. Use the
getLastErrorMessage to obtain more information about the error.

ERROR_DOWNLOADING_CALIBRATIONS There was an error while downloading the camera calibration from
one of the target devices. Use the getLastErrorMessage to obtain
more information about the error.

int closeSession ()

Closes the current session and disconnects from all connected Glaz devices. It is highly recommended to
call this function at the end of your application.

Return error codes:

ERROR_NONE Session was closed successfully.

10 Glaz API

void resetAllDevices()

Resets all devices. This causes the devices to re-initialise. If a session was open, it will be automatically
closed.

void resetAllPorts()

Resets all ports. This forces a power cycle on all ports and causes the devices to re-initialise. This function
is recommended if a normal reset does not work. If a session was open, it will be automatically closed.

int setTestMode(int testMode)

This function is intended for debugging. Enabling one of the test modes will force a known pattern when
calling runMeasurement. The options are: alternating pattern between 0x0000 and 0xFFFF, fixed value at
0xFFFF or fixed value at 0x000.

Supported by:

LineScan-I, LineScan-II, LineScan-I-Gen2

Parameters:

testMode Must be one of the following values (as defined at the top of the header
file):
 TEST_OFF 0
 TEST_DAC_ALTERNATING 1
 TEST_DAC_ALL_ONES 2
 TEST_DAC_ALL_ZEROS 3

Return error codes:

ERROR_NONE No error and settings were applied.

ERROR_NOT_INITIALISED The session was not initialised. First call initialiseSession or
initialiseSingleDeviceSession.

ERROR_INVALID_TEST_MODE The specified test mode is not one of the values listed above.

int setWavelengths(double lambdaMin, double lambdaMax)

Sets the minimum and maximum wavelengths when using the IFFT pre-processor. See the Glaz LineScan
manuals for more information.

Supported by:

All

Parameters:

lambdaMin The minimum wavelength. Default = 1.0. Validation:
 lambdaMin > 0.0

lambdaMax The maximum wavelength. Default = 2.0. Validation:
 lambdaMax > 0.0
 lambdaMax > lambdaMin

Return error codes:

ERROR_NONE No error and settings were applied.

ERROR_NOT_INITIALISED The session was not initialised. First call initialiseSession or
initialiseSingleDeviceSession.

ERROR_INVALID_WAVELENGTHS The lambdaMin and/or lambdaMax parameters failed validation.

11 Glaz API

int setHardwareAveraging(int averaging)

Sets the hardware averaging level. See the Glaz LineScan manuals for more information. The supported
levels of hardware averaging are device-dependent.

Supported by:

LineScan-I, LineScan-II, LineScan-I-Gen2

Parameters:

averaging The hardware averaging level. Default = AVERAGING_X1. Must be one of the
following values (as defined at the top of the header file):
 AVERAGING_X1 0
 AVERAGING_X2 1
 AVERAGING_X4 2
 AVERAGING_X8 3
 AVERAGING_X16 4
 AVERAGING_X32 5
 AVERAGING_X64 6
 AVERAGING_X128 7
 AVERAGING_X256 8
 AVERAGING_X512 9
 AVERAGING_X1024 10
 AVERAGING_X2048 11
 AVERAGING_X4096 12

Return error codes:

ERROR_NONE No error and settings were applied.

ERROR_NOT_INITIALISED The session was not initialised. First call initialiseSession or
initialiseSingleDeviceSession.

ERROR_INVALID_AVERAGING The specified hardware averaging level is invalid or not supported. Use
the getLastErrorMessage to obtain more information about valid hardware
averaging levels.

int setResolution(int resolution)

Sets the resolution (number of bits) of the measurement data.

Supported by:

LineScan-II, LineScan-I-Gen2

Parameters:

resolution The resolution. Default = RESOLUTION_16BIT. Must be one of the following
values (as defined at the top of the header file):
 RESOLUTION_16BIT 3
 RESOLUTION_14BIT 2
 RESOLUTION_12BIT 1
 RESOLUTION_10BIT 0

Return error codes:

ERROR_NONE No error and settings were applied.

ERROR_NOT_INITIALISED The session was not initialised. First call initialiseSession or
initialiseSingleDeviceSession.

ERROR_RESOLUTION_OUT_OF_RANGE The specified resolution is invalid. Use the correct resolution as defined
above.

ERROR_RESOLUTION_NOT_SUPPORTED The device does not support the specified resolution.

12 Glaz API

int setScanCount(int scanCount)

Sets the number of scans (lines) that will be measured during one measurement run. This is also equal to
the number of scans (lines) that will be used during software averaging. See the Glaz LineScan manuals for
more information.

Supported by:

All

Parameters:

scanCount The number of scans (lines) to be measured during one measurement
run. Default = 1. Validation:
 scanCount > 0
 scanCount <= 4000000 (LineScan-I-Gen2, version 4.0 or higher)
or scancount <= 50000 (all other LineScan devices)

Return error codes:

ERROR_NONE No error and settings were applied.

ERROR_NOT_INITIALISED The session was not initialised. First call initialiseSession or
initialiseSingleDeviceSession.

ERROR_INVALID_SCAN_COUNT The scanCount parameter failed validation.

int setScanClockSpeed(int speed)

Sets pixel clock scan speed. See the Glaz LineScan-I manual for more information.

Supported by:

LineScan-I

Parameters:

speed The clock speed. Default = SCAN_CLOCK_FULL_SPEED. Must be one of the
following values (as defined at the top of the header file):
 SCAN_CLOCK_FULL_SPEED 0
 SCAN_CLOCK_HALF_SPEED 1

Return error codes:

ERROR_NONE No error and settings were applied.

ERROR_NOT_INITIALISED The session was not initialised. First call initialiseSession or
initialiseSingleDeviceSession.

ERROR_CLOCK_SPEED_UNSUPPORTED Variable clock speed is not supported. It is only supported by LineScan-I
devices.

ERROR_INVALID_SCAN_CLOCK_SPEED An invalid clock speed was specified.

int setADCGain(int gain)

Sets the ADC gain.

Supported by:

LineScan-EC (ADC gain x1, x2 and x4), all other devices (only ADC gain x1)

Parameters:

gain The ADC gain. Default = ADC_GAIN_X1. Must be one of the following values
(as defined at the top of the header file):
 ADC_GAIN_X1 0
 ADC_GAIN_X2 1
 ADC_GAIN_X4 2

13 Glaz API

Return error codes:

ERROR_NONE No error and settings were applied.

ERROR_NOT_INITIALISED The session was not initialised. First call initialiseSession or
initialiseSingleDeviceSession.

ERROR_INVALID_ADC_GAIN An invalid or unsupported ADC gain was specified.

int setTriggerDelay(int us)

Sets the trigger delay in [μs].

Supported by:

All

Parameters:

us The trigger delay. Default = 0 us. Validation:
 us >= 0
 us <= 100000

Return error codes:

ERROR_NONE No error and settings were applied.

ERROR_NOT_INITIALISED The session was not initialised. First call initialiseSession or
initialiseSingleDeviceSession.

ERROR_INVALID_TRIGGER_DELAY The us parameter failed validation.

int setTriggerMode(int mode)

Sets the trigger mode.

Supported by:

All

Parameters:

mode The hardware averaging level. Default = TRIGGER_EXTERNAL. Must be one
of the following values (as defined at the top of the header file):
 TRIGGER_EXTERNAL 0
 TRIGGER_INTERNAL 1
 TRIGGER_BURST 2

Return error codes:

ERROR_NONE No error and settings were applied.

ERROR_NOT_INITIALISED The session was not initialised. First call initialiseSession or
initialiseSingleDeviceSession.

ERROR_INVALID_TRIGGER_MODE The specified trigger mode is invalid or not supported.

int setInternalTriggerFrequency(double Hz)

Sets the internal trigger frequency in [Hz]. This value is only used when the trigger mode is set to “internal
trigger”. The trigger frequency range is device-dependent.

Supported by:

LineScan-I (TimeFill), LineScan-II, LineScan-I-Gen2

Parameters:

Hz The internal trigger frequency. Default = 1000 Hz.

Return error codes:

ERROR_NONE No error and settings were applied.

14 Glaz API

ERROR_NOT_INITIALISED The session was not initialised. First call initialiseSession or
initialiseSingleDeviceSession.

ERROR_INVALID_TRIGGER_FREQUENCY The specified trigger frequency falls outside the valid range. Use the
getLastErrorMessage to obtain more information about the valid range.

int setIntegrationMode(int mode)

Glaz LineScan-I devices are pre-programmed with a specific integration mode (PulseSync or TimeFill) and
the integration mode cannot be changed at run-time. Glaz LineScan-II and LineScan-I-Gen2 devices support
dynamic integration modes and the integration mode can be changed at run-time. See the Glaz LineScan
manuals for more information on integration modes.

Supported by:

LineScan-II, LineScan-I-Gen2

Parameters:

mode The integration mode. Default = INT_MODE_TIMEFILL (LineScan-II only).
Must be one of the following values (as defined at the top of the header
file):
 INT_MODE_PULSESYNC 0
 INT_MODE_TIMEFILL 1

Return error codes:

ERROR_NONE No error and settings were applied.

ERROR_NOT_INITIALISED The session was not initialised. First call initialiseSession or
initialiseSingleDeviceSession.

ERROR_INVALID_INTEGRATION_MODE The specified integration mode is invalid or not supported.

int setIntegrationTime(int us)

Sets the camera integration time in [μs]. The range of supported integration times is device-dependent.

Supported by:

All

Parameters:

us The integration time. Default = 10 us.

Return error codes:

ERROR_NONE No error and settings were applied.

ERROR_NOT_INITIALISED The session was not initialised. First call initialiseSession or
initialiseSingleDeviceSession.

ERROR_INVALID_INTEGRATION_TIME The specified integration time falls outside the valid range. Use the
getLastErrorMessage to obtain more information about the valid range.

int setSyncOutMode (int mode)

Sets the output mode of the Sync port. See the Glaz LineScan-II or LineScan-I-Gen2 manual for more
information. The supported modes are device-dependent. For devices in PulseSync mode, the Sync output
mode is automatically forced to OUT_BUSY.

Supported by:

LineScan-II, LineScan-I-Gen2

Parameters:

mode The output mode. Default = OUT_INT_WINDOW. Must be one of the following
values (as defined at the top of the header file):

15 Glaz API

 OUT_INT_WINDOW 0
 OUT_TRIGGER 1
 OUT_BUSY 2
 OUT_TRIGGER_CYCLE_START 3
 OUT_TRIGGER_CYCLE_RUNNING 4
 OUT_OFF 5

Return error codes:

ERROR_NONE No error and settings were applied.

ERROR_NOT_INITIALISED The session was not initialised. First call initialiseSession or
initialiseSingleDeviceSession.

ERROR_INVALID_SYNC_OUT_MODE The specified output mode is invalid or not supported.

int setSyncOutPolarity (int polarity)

Sets the output polarity of the Sync port. See the Glaz LineScan-II or LineScan-I-Gen2 manual for more
information. For devices in PulseSync mode, the Sync output polarity is automatically forced to
OUT_POLARITY_ACTIVE_LO.

Supported by:

LineScan-II, LineScan-I-Gen2

Parameters:

polarity The output polarity. Default = OUT_POLARITY_ACTIVE_LO. Must be one of the
following values (as defined at the top of the header file):
 OUT_POLARITY_ACTIVE_HI 1
 OUT_POLARITY_ACTIVE_LO 0

Return error codes:

ERROR_NONE No error and settings were applied.

ERROR_NOT_INITIALISED The session was not initialised. First call initialiseSession or
initialiseSingleDeviceSession.

ERROR_OUT_POLARITY_NOT_SUPPORTED Polarity settings are not supported by the device.

ERROR_INVALID_OUT_POLARITY The specified polarity is not one of the values listed above.

int setAuxOutMode (int mode)

Sets the output mode of the Aux port. See the Glaz LineScan-II or LineScan-I-Gen2 manual for more
information.

Supported by:

LineScan-II, LineScan-I-Gen2

Parameters:

mode The output mode. Default = OUT_INT_WINDOW. Must be one of the following
values (as defined at the top of the header file):
 OUT_INT_WINDOW 0
 OUT_TRIGGER 1
 OUT_BUSY 2
 OUT_TRIGGER_CYCLE_START 3
 OUT_TRIGGER_CYCLE_RUNNING 4
 OUT_OFF (input) 5

Return error codes:

ERROR_NONE No error and settings were applied.

ERROR_NOT_INITIALISED The session was not initialised. First call initialiseSession or
initialiseSingleDeviceSession.

ERROR_INVALID_AUX_OUT_MODE The specified output mode is invalid or not supported.

16 Glaz API

int setAuxOutPolarity (int polarity)

Sets the output polarity of the Aux port. See the Glaz LineScan-II or LineScan-I-Gen2 manual for more
information.

Supported by:

LineScan-II, LineScan-I-Gen2

Parameters:

polarity The output polarity. Default = OUT_POLARITY_ACTIVE_LO. Must be one of the
following values (as defined at the top of the header file):
 OUT_POLARITY_ACTIVE_HI 1
 OUT_POLARITY_ACTIVE_LO 0

Return error codes:

ERROR_NONE No error and settings were applied.

ERROR_NOT_INITIALISED The session was not initialised. First call initialiseSession or
initialiseSingleDeviceSession.

ERROR_OUT_POLARITY_NOT_SUPPORTED Polarity settings are not supported by the device.

ERROR_INVALID_OUT_POLARITY The specified polarity is not one of the values listed above.

int setOutCycleCount(int cycleCount)

Sets the cycle count when using OUT_TRIGGER_CYCLE_START and OUT_TRIGGER_CYCLE_RUNNING output modes. See
the Glaz LineScan-II or LineScan-I-Gen2 manual for more information.

Supported by:

LineScan-II, LineScan-I-Gen2

Parameters:

cycleCount The output cycle count. Default = 2. Validation:
 cycleCount >= 1
 cycleCount <= 31

Return error codes:

ERROR_NONE No error and settings were applied.

ERROR_NOT_INITIALISED The session was not initialised. First call initialiseSession or
initialiseSingleDeviceSession.

ERROR_CYCLE_COUNT_UNSUPPORTED Cycle counting is not supported. It is only supported by LineScan-II
devices.

ERROR_INVALID_CYCLE_COUNT The cycleCount parameter failed validation.

int setTimeout(int ms)

Sets the communication timeout in [ms]. When running a measurement, it can happen that devices are not
triggered or that that communication is interrupted. During runMeasurement, the API will wait for the specified
time-out and if no data was received from the connected devices it will return with an error code.

Supported by:

All

Parameters:

ms The time-out duration. Default = 4000 ms.

Return error codes:

ERROR_NONE No error and settings were applied.

17 Glaz API

ERROR_NOT_INITIALISED The session was not initialised. First call initialiseSession or
initialiseSingleDeviceSession.

int captureBackground(int scanCount)

Captures the background for all connected LineScan devices. During the background capture, ScanCount
number of scans (lines) are measured and averaged.

Parameters:

scanCount The number of scans (lines) to measure and average to capture the
background.

Return error codes:

ERROR_NONE Backgrounds were captured successfully.

ERROR_NOT_INITIALISED The session was not initialised. First call initialiseSession or
initialiseSingleDeviceSession.

ERROR_CAPTURING_BACKGROUNDS There was a communication error while receiving data from the
connected LineScan devices. Check the USB cable connections. Use the
getLastErrorMessage to obtain more information about the error.

int runMeasurement()

Starts a measurement run. The connected devices will perform a measurement with the previously specified
settings. If settings were not specified, the default values are used.

This function will only return, when the measurement run is completed. A measurement run is completed
after:

• All scanCount number of scans (lines) were captured by the Glaz LineScan devices, the data was

received via USB and processed by the API back-end

• or A time-out was encountered

• or An error was detected.

Return error codes:

ERROR_NONE No error and measurement was run successfully.

ERROR_NOT_INITIALISED The session was not initialised. First call initialiseSession or
initialiseSingleDeviceSession.

ERROR_INVALID_SETTINGS An invalid combination of settings were specified. Use the
getLastErrorMessage to obtain more information about the error.

ERROR_MEASUREMENT_STREAM An error was detected in the data stream from the camera. You can retry
by calling runMeasurement again. If the problem persists, check the
camera USB connection.

ERROR_RUNNING_MEASUREMENT There was a communication error while receiving data from the
connected LineScan devices. Check the USB cable connections. Use the
getLastErrorMessage to obtain more information about the error.

int startMeasurement()

Starts a measurement run. The connected devices will perform a measurement with the previously specified
settings. If settings were not specified, the default values are used.

This function returns immediately. Call isMeasurementDone to check when the measurement run is completed.

Return error codes:

ERROR_NONE No error and measurement was run successfully.

18 Glaz API

ERROR_NOT_INITIALISED The session was not initialised. First call initialiseSession or
initialiseSingleDeviceSession.

ERROR_INVALID_SETTINGS An invalid combination of settings were specified. Use the
getLastErrorMessage to obtain more information about the error.

int isMeasurementDone(bool* isDone)

Check if the measurement run is completed. This function is used in conjunction with startMeasurement. A
measurement run is completed after:

• All scanCount number of scans (lines) were captured by the Glaz LineScan devices, the data was

received via USB and processed by the API back-end

• or A time-out was encountered

• or An error was detected.

Parameters:

isDone This is an out-parameter. Returns TRUE when the measurement run is
completed.

Return error codes:

ERROR_NONE No error and measurement was run successfully.

ERROR_NOT_INITIALISED The session was not initialised. First call initialiseSession or
initialiseSingleDeviceSession.

ERROR_MEASUREMENT_STREAM An error was detected in the data stream from the camera. You can retry
by calling startMeasurement again. If the problem persists, check the
camera USB connection.

ERROR_RUNNING_MEASUREMENT There was a communication error while receiving data from the
connected LineScan devices. Check the USB cable connections. Use the
getLastErrorMessage to obtain more information about the error.

int getResult(int calculationIndex, int* count, double* values)

Returns the result of a calculation after runMeasurement was called.

Parameters:

calculationIndex The index of the calculation specified in the Glaz script file. The index is
zero-based and depends on the order of calculations defined in the
script file. The first calculation in the script file will have
calculationIndex = 0, the second calculation will have
calculationIndex = 1 and so on.
When the API was initialised with the initialiseSingleDeviceSession
function, the only valid value is calculationIndex = 0.

count This is an out-parameter. Returns the number of values in the values
array. The number will be equal to the number of pixels in the camera
sensor array.

values This is an out-parameter (array). Returns the result of the calculation.
The array must be created by the client with a sufficient size. It is
recommended to pass an array with a size of 2048.

Return error codes:

ERROR_NONE No error and values were returned successfully.

ERROR_NOT_INITIALISED The session was not initialised. First call initialiseSession or
initialiseSingleDeviceSession.

ERROR_INVALID_CALCULATION_INDEX The calculationIndex is out of range. Check the script file and
determine the correct index.

19 Glaz API

ERROR_INVALID_RESULT_DATA_SIZE The array size of the result array values does not match the number of
pixels. This is most likely caused if a gated calculation was defined, but
the calculation was never triggered. Check the gating attributes in the
script file and the trigger level of the Glaz-PD device.

ERROR_NO_MEASUREMENT_RUN The runMeasurement was not called and there are no results available.

int getComplexResult(int calculationIndex, int* count, double* real, double* imag)

Returns the complex result of a calculation after runMeasurement was called. A result will only be complex if
the IFFT pre-processor is used.

Parameters:

calculationIndex The index of the calculation specified in the Glaz script file. The index is
zero-based and depends on the order of calculations defined in the
script file. The first calculation in the script file will have
calculationIndex = 0, the second calculation will have
calculationIndex = 1 and so on.
When the API was initialised with the initialiseSingleDeviceSession
function, the only valid value is calculationIndex = 0.

count This is an out-parameter. Returns the number of values in the values
array. The number will be equal to the number of pixels in the camera
sensor array.

real This is an out-parameter (array). Returns the real part of the result of the
calculation. The array must be created by the client with a sufficient size.
It is recommended to pass an array with a size of 2048.

imag This is an out-parameter (array). Returns the imaginary part of the result
of the calculation. The array must be created by the client with a
sufficient size. It is recommended to pass an array with a size of 2048.

Return error codes:

ERROR_NONE No error and values were returned successfully.

ERROR_NOT_INITIALISED The session was not initialised. First call initialiseSession or
initialiseSingleDeviceSession.

ERROR_INVALID_CALCULATION_INDEX The calculationIndex is out of range. Check the script file and
determine the correct index.

ERROR_INVALID_RESULT_DATA_SIZE The array size of the result array values does not match the number of
pixels. This is most likely caused if a gated calculation was defined, but
the calculation was never triggered. Check the gating attributes in the
script file and the trigger level of the Glaz-PD device.

ERROR_NO_MEASUREMENT_RUN The runMeasurement was not called and there are no results available.

int getTimeStamp(int cameraNumber, int scanIndex, double* timeStamp)

Returns the timestamp for a given camera number and scan index. The timestamp is given in [s].

Parameters:

cameraNumber The number specified for a LineScan device in the Glaz script file.

scanIndex The index of the scan. Validation:

 scanIndex >= 0
 scanIndex < scanCount

Where scanCount is the parameter that was passed to the setScanCount
function.

timeStamp This is an out-parameter. Returns the timestamp for the specified
camera number and scan index. If no timestamp is available, -1.0 is
returned.

20 Glaz API

Return error codes:

ERROR_NONE No error and values were returned successfully.

ERROR_NOT_INITIALISED The session was not initialised. First call initialiseSession or
initialiseSingleDeviceSession.

ERROR_INVALID_CAMERA_NUMBER The cameraNumber is out of range. Check the script file and determine the
correct device number.

int getScan(int calculationIndex, int scanIndex, int* count, double* values)

Returns the data of a specific scan (line) for a specific calculation after runMeasurement was called. This
function will only return data if the keepscans attribute for the calculation is enabled in the script file. When the
API was initialised with the initialiseSingleDeviceSession function, the keepScans parameter must have
been set to true.

Parameters:

calculationIndex The index of the calculation specified in the Glaz script file. The index is
zero-based and depends on the order of calculations defined in the
script file. The first calculation in the script file will have
calculationIndex = 0, the second calculation will have
calculationIndex = 1 and so on.
When the API was initialised with the initialiseSingleDeviceSession
function, the only valid value is calculationIndex = 0.

scanIndex The index of the scan. Validation:

 scanIndex >= 0
 scanIndex < scanCount

Where scanCount is the parameter that was passed to the setScanCount
function.

count This is an out-parameter. Returns the number of values in the values
array. The number will be equal to the number of pixels in the camera
sensor array.

values This is an out-parameter (array). Returns the data of the specified
calculation and scan. The array must be created by the client with a
sufficient size. It is recommended to pass an array with a size of 2048.

Return error codes:

ERROR_NONE No error and values were returned successfully.

ERROR_NOT_INITIALISED The session was not initialised. First call initialiseSession or
initialiseSingleDeviceSession.

ERROR_INVALID_CALCULATION_INDEX Either the calculationIndex or scanIndex is out of range. Check the
script file and determine the correct calculation index. Also check the
scanCount parameter that was passed to the setScanCount function.

ERROR_INVALID_RESULT_DATA_SIZE The array size of the result array values does not match the number of
pixels. This is most likely caused if a gated calculation was defined, but
the calculation was never triggered. Check the gating attributes in the
script file and the trigger level of the Glaz-PD device.

ERROR_NO_MEASUREMENT_RUN The runMeasurement was not called and there are no results available.

int getComplexScan(int calculationIndex, int scanIndex, int* count, double* real, double* imag)

Returns the complex data of a specific scan (line) for a specific calculation after runMeasurement was called.
This function will only return data if the keepscans attribute for the calculation is enabled in the script file. When
the API was initialised with the initialiseSingleDeviceSession function, the keepScans parameter must have
been set to true. A result will only be complex if the IFFT pre-processor is used.

21 Glaz API

Parameters:

calculationIndex The index of the calculation specified in the Glaz script file. The index is
zero-based and depends on the order of calculations defined in the
script file. The first calculation in the script file will have
calculationIndex = 0, the second calculation will have
calculationIndex = 1 and so on.
When the API was initialised with the initialiseSingleDeviceSession
function, the only valid value is calculationIndex = 0.

scanIndex The index of the scan. Validation:

 scanIndex >= 0
 scanIndex < scanCount

Where scanCount is the parameter that was passed to the setScanCount
function.

count This is an out-parameter. Returns the number of values in the values
array. The number will be equal to the number of pixels in the camera
sensor array.

real This is an out-parameter (array). Returns the real part of the data of the
specified calculation and scan. The array must be created by the client
with a sufficient size. It is recommended to pass an array with a size of
2048.

imag This is an out-parameter (array). Returns the imaginary part of the data
of the specified calculation and scan. The array must be created by the
client with a sufficient size. It is recommended to pass an array with a
size of 2048.

Return error codes:

ERROR_NONE No error and values were returned successfully.

ERROR_NOT_INITIALISED The session was not initialised. First call initialiseSession or
initialiseSingleDeviceSession.

ERROR_INVALID_CALCULATION_INDEX Either the calculationIndex or scanIndex is out of range. Check the
script file and determine the correct calculation index. Also check the
scanCount parameter that was passed to the setScanCount function.

ERROR_INVALID_RESULT_DATA_SIZE The array size of the result array values does not match the number of
pixels. This is most likely caused if a gated calculation was defined, but
the calculation was never triggered. Check the gating attributes in the
script file and the trigger level of the Glaz-PD device.

ERROR_NO_MEASUREMENT_RUN The runMeasurement was not called and there are no results available.

int getAllScansSizes(int calculationIndex, int* rowCount, int* coloumnCount)

Returns the total array sizes of a specific calculation, as required for an array to be passed to the getAllScans
function.

Parameters:

calculationIndex The index of the calculation specified in the Glaz script file. The index is
zero-based and depends on the order of calculations defined in the
script file. The first calculation in the script file will have
calculationIndex = 0, the second calculation will have
calculationIndex = 1 and so on.
When the API was initialised with the initialiseSingleDeviceSession
function, the only valid value is calculationIndex = 0.

rowCount This is an out-parameter. Returns the number of scans (lines) captured
for the given calculation.

coloumnCount This is an out-parameter. Returns the number of pixels per scan (line).

22 Glaz API

Return error codes:

ERROR_NONE No error and settings were applied.

ERROR_NOT_INITIALISED The session was not initialised. First call initialiseSession or
initialiseSingleDeviceSession..

ERROR_INVALID_CALCULATION_INDEX The calculationIndex is out of range. Check the script file and
determine the correct index.

int getAllScans(int calculationIndex, unsigned short* values)

Returns all the scan (line) data of a specific calculation. This function will only return data if the keepscans
attribute for the calculation is enabled in the script file. When the API was initialised with the
initialiseSingleDevice function, the keepScans parameter must have been set to true.

Parameters:

calculationIndex The index of the calculation specified in the Glaz script file. The index is
zero-based and depends on the order of calculations defined in the
script file. The first calculation in the script file will have
calculationIndex = 0, the second calculation will have
calculationIndex = 1 and so on.
When the API was initialised with the initialiseSingleDeviceSession
function, the only valid value is calculationIndex = 0.

values This is an out-parameter (array). Returns the data for all scans for the
specified calculation. The array must be created by the client with a
sufficient size. The minimum size of the array is rowCount* coloumnCount,
as returned by the getAllScansSizes function. The data is returned as an
1D-array an is indexed as follows: i*coloumnCount+j , where i is the
scan index and j is the pixel index.

Return error codes:

ERROR_NONE No error and values were returned successfully.

ERROR_NOT_INITIALISED The session was not initialised. First call initialiseSession or
initialiseSingleDeviceSession.

ERROR_INVALID_CALCULATION_INDEX The calculationIndex is out of range. Check the script file and
determine the correct index.

ERROR_INVALID_RESULT_DATA_SIZE The sub-array size of the result array values does not match the number
of pixels. This is most likely caused if a gated calculation was defined,
but the calculation was never triggered. Check the gating attributes in
the script file and the trigger level of the Glaz-PD device.

ERROR_NO_MEASUREMENT_RUN The runMeasurement was not called and there are no results available.

int writeAllScansToFile(int calculationIndex, const char* filename, bool writeTimestamps,
 int fileFormat)

Writes all scans for the calculation with the given index to a binary file.

This function must be called before running a measurement. The scans
are written to the target file while the measurement is performed.

The binary file is written in big-endian format and has the following structure if writeTimestamps is false:

uint16 number of scans, Ns

uint16 number of pixels, Np

Np x uint16 1. scan

Np x uint16 2. scan
…

Np x uint16 Ns. scan

23 Glaz API

The binary file has the following structure if writeTimestamps is true:

4 x uint8 preamble consisting of 4 bytes: 0x00, 0x00, 0xA5, 0xC3

uint8 version: 0x01

uint16 number of scans, Ns

uint16 number of pixels, Np

uint32 timestamp for 1. scan

Np x uint16 1. scan

uint32 timestamp for 2. scan

Np x uint16 2. scan
…
uint32 timestamp for Ns. scan

Np x uint16 Ns. scan

The timestamp value can be converted to [s] by multiplying it with the following factor:

Model Conversion factor to [s]

LineScan-I 0.1 (half speed)
0.05 (full speed)

LineScan-I-Gen2 0.2

LineScan-II 0.2

LineScan-LS 0.25

LineScan-EC 0.25

Parameters:

calculationIndex The index of the calculation specified in the Glaz script file. The index is
zero-based and depends on the order of calculations defined in the
script file. The first calculation in the script file will have
calculationIndex = 0, the second calculation will have
calculationIndex = 1 and so on.
When the API was initialised with the initialiseSingleDevice function,
the only valid value is calculationIndex = 0.

filename File path of the target data file.

writeTimestamps When set to TRUE, timestamps are written to the binary file for each
captured line.

fileFormat The file format. Must be one of the following values (as defined at the
top of the header file):
 FORMAT_BINARY 0
 FORMAT_CSV 1

Return error codes:

ERROR_NONE No error and settings were applied.

ERROR_NOT_INITIALISED The session was not initialised. First call initialiseSession or
initialiseSingleDeviceSession.

ERROR_INVALID_CALCULATION_INDEX The calculationIndex is out of range. Check the script file and
determine the correct index.

ERROR_INVALID_FILE_FORMAT The fileFormat parameter must be 0 for binary and 1 for CSV.

int getPDValues(int pdNumber, int pdChannel, int* count, double* values)

Returns the measured data for a given Glaz-PD device and channel after runMeasurement was called.

Parameters:

pdNumber The number of the Glaz-PD device as specified in the Glaz script file.

pdChannel The Glaz-PD channel number (either 1 or 2).

count This is an out-parameter. Returns the number of values in the values
array. The number will be equal to scanCount as passed to the
setScanCount function.

24 Glaz API

values This is an out-parameter (array). Returns the measured data. The array
must be created by the client with a sufficient size. The minimum size of
the array is scanCount as passed to the setScanCount function.

Return error codes:

ERROR_NONE No error and values were returned successfully.

ERROR_NOT_INITIALISED The session was not initialised. First call initialiseSession or
initialiseSingleDeviceSession.

ERROR_INVALID_PD_NUMBER The pdNumber is out of range. Check the script file and determine the
correct device number.

ERROR_INVALID_PD_CHANNEL The pdChannel is out of range or the specified channel is not enabled in
the script file.

int getPDReference (int pdNumber, int pdChannel, double* value)

Returns measured Glaz-PD value used for normalisation after runMeasurement was called. This is also the
first measured value during a measurement run.

Parameters:

pdNumber The number of the Glaz-PD device as specified in the Glaz script file.

pdChannel The Glaz-PD channel number (either 1 or 2).

value This is an out-parameter. Returns the reference value used for
normalisation.

Return error codes:

ERROR_NONE No error and values were returned successfully.

ERROR_NOT_INITIALISED The session was not initialised. First call initialiseSession or
initialiseSingleDeviceSession..

ERROR_INVALID_PD_NUMBER The pdNumber is out of range. Check the script file and determine the
correct device number.

ERROR_INVALID_PD_CHANNEL The pdChannel is out of range or the specified channel is not enabled in
the script file.

int getAUXStates(int cameraNumber, int* count, double* values)

Returns the measured Aux states for a given LineScan device after runMeasurement was called.

Parameters:

cameraNumber The number of the Glaz LineScan device as specified in the Glaz script
file.

count This is an out-parameter. Returns the number of values in the values
array. The number will be equal to scanCount as passed to the
setScanCount function.

values This is an out-parameter (array). Returns the measured Aux states. The
array must be created by the client with a sufficient size. The minimum
size of the array is scanCount as passed to the setScanCount function. A
“1” corresponds to a digital high state. A “0” corresponds to a digital low
state.

Return error codes:

ERROR_NONE No error and values were returned successfully.

ERROR_NOT_INITIALISED The session was not initialised. First call initialiseSession or
initialiseSingleDeviceSession.

25 Glaz API

ERROR_INVALID_CAMERA_NUMBER The cameraNumber is out of range. Check the script file and determine the
correct device number.

ERROR_AUX_STATES_NOT_SUPPORTED The connected LineScan device does not have an Aux port and Aux
states cannot be measured.

int getAUXCycleCounts(int cameraNumber, int maxCount, int* count, int* values)

Uses the Aux port states for a given LineScan device to perform a cycle count. With each trigger the cycle
count is incremented. If the Aux state is high when triggered, the cycle count is reset to 1.

The Aux port must be configured as an input when measuring
external Aux port signals. See “setAuxOut Mode”.

Parameters:

cameraNumber The number of the Glaz LineScan device as specified in the Glaz script
file.

maxCount The maximum expected cycle count.

count This is an out-parameter. Returns the number of values in the values
array. The number will be equal to scanCount as passed to the
setScanCount function.

values This is an out-parameter (array). Returns the measured Aux cycle counts.
The array must be created by the client with a sufficient size. The
minimum size of the array is scanCount as passed to the setScanCount
function.

Return error codes:

ERROR_NONE No error and values were returned successfully.

ERROR_NOT_INITIALISED The session was not initialised. First call initialiseSession or
initialiseSingleDeviceSession.

ERROR_INVALID_CAMERA_NUMBER The cameraNumber is out of range. Check the script file and determine the
correct device number.

ERROR_AUX_STATES_NOT_SUPPORTED The connected LineScan device does not have an Aux port and Aux
states cannot be measured.

ERROR_AUX_CYCLE_COUNT_INVALID The cycle count exceeds the specified maxCount.

int getLastErrorMessage(char* errorMessage)

Returns a description of the previously encountered error message. Call this function to obtain more
information about the error.

AUX state

Internal/External trigger

1Cycle counter 2 3 4 1 2

Reset Reset

26 Glaz API

Parameters:

errorMessage This is an out-parameter. A string array containing a description of the
error. The array must be created by the client with a sufficient size. The
minimum recommended size is 1024. If no error was encountered
previously, the string will be empty.

Return error codes:

ERROR_NONE No error was encountered.

27 Glaz API

IMPORTANT NOTICE

Synertronic Designs reserves the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without
notice. Customers should obtain the latest relevant information before placing orders and should verify that
such information is current and complete. All products are sold subject to Synertronic Designs’ terms and
conditions of sale supplied at the time of order acknowledgment.

Synertronic Designs assumes no liability for applications assistance or customer product design. Customers
are responsible for their applications using Synertronic Designs products. To minimize the risks associated
with customer applications, customers should provide adequate operating safeguards.

Reproduction of information in Synertronic Designs data sheets, summary notes and brochures is permissible
only if reproduction is without alteration and is accompanied by all associated warranties, conditions,
limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business
practice. Synertronic Designs is not responsible or liable for such altered documentation.

Synertronic Designs on the web: www.synertronic.co.za

E-mail: info@synertronic.co.za

Postal address: Kaneel Cr 34
 Stellenbosch
 7600
 South Africa

http://www.synertronic.co.za/
mailto:info@synertronic.co.za

	Introduction
	Selecting the correct API
	Supported platforms

	Installing the API
	API archive
	Windows
	Linux

	API with C interface
	Overview
	Initialise the API
	Apply settings
	Run a measurement
	Retrieve and process results
	Close the API

	Error handling
	GlazLib.h header file
	void getVersion(int* majorVersion, int* minorVersion)
	int initialiseSession(const char* scriptFileName)
	int initialiseSingleDeviceSession (int singelDeviceType, bool keepScans, bool reverse)
	int closeSession ()
	void resetAllDevices()
	void resetAllPorts()
	int setTestMode(int testMode)
	int setWavelengths(double lambdaMin, double lambdaMax)
	int setHardwareAveraging(int averaging)
	int setResolution(int resolution)
	int setScanCount(int scanCount)
	int setScanClockSpeed(int speed)
	int setADCGain(int gain)
	int setTriggerDelay(int us)
	int setTriggerMode(int mode)
	int setInternalTriggerFrequency(double Hz)
	int setIntegrationMode(int mode)
	int setIntegrationTime(int us)
	int setSyncOutMode (int mode)
	int setSyncOutPolarity (int polarity)
	int setAuxOutMode (int mode)
	int setAuxOutPolarity (int polarity)
	int setOutCycleCount(int cycleCount)
	int setTimeout(int ms)
	int captureBackground(int scanCount)
	int runMeasurement()
	int startMeasurement()
	int isMeasurementDone(bool* isDone)
	int getResult(int calculationIndex, int* count, double* values)
	int getComplexResult(int calculationIndex, int* count, double* real, double* imag)
	int getTimeStamp(int cameraNumber, int scanIndex, double* timeStamp)
	int getScan(int calculationIndex, int scanIndex, int* count, double* values)
	int getComplexScan(int calculationIndex, int scanIndex, int* count, double* real, double* imag)
	int getAllScansSizes(int calculationIndex, int* rowCount, int* coloumnCount)
	int getAllScans(int calculationIndex, unsigned short* values)
	int writeAllScansToFile(int calculationIndex, const char* filename, bool writeTimestamps, int fileFormat)
	int getPDValues(int pdNumber, int pdChannel, int* count, double* values)
	int getPDReference (int pdNumber, int pdChannel, double* value)
	int getAUXStates(int cameraNumber, int* count, double* values)
	int getAUXCycleCounts(int cameraNumber, int maxCount, int* count, int* values)
	int getLastErrorMessage(char* errorMessage)

	IMPORTANT NOTICE

